Calculus AB
 3-3 and 3-4
 $1^{\text {st }}$ and $2^{\text {nd }}$ Derivative Tests

First Derivative Test- Let c be a critical number of a function f that is continuous on an open interval (abb), containing c. If f is differentiable on the interval, except possibly at c , then:

1) if $f^{\prime}(x)$ changes from negative to positive at c, then $f(c)$ is:
s a minimum.
2) if $f^{\prime}(x)$ changes from positive to negative atc, then $f(c)$ is:
l a maximum
3) if $f^{\prime}(x)$ does not change signs at c, then $f(c)$ is:
test Fails.
(could be a paint of inflection)

Given: $f(x)=\frac{1}{8} x^{4}-\frac{3}{2} x^{2}+2$
Look for relationships between the graph $f(x)$ and $f^{\prime}(x)$ and $f(x)$ and $f^{\prime \prime}(x)$.

Second Derivative Test- Let f be a function with critical point c such that $f^{\prime}(c)=0$ and $f^{\prime \prime}(x)$ exists on an open interval (a, b), containing c.

1) if $f^{\prime \prime}(x)>0$, then $f(c)$ is: a minimum.
F is concave up.
2) if $f^{\prime \prime}(x)<0$, then $f(c)$ is: a maximum.
F is concave down.
3) if $f^{\prime \prime}(x)=0$, then the test fails (use first derivative test).

Point of Inflection- point where concavity
changes, always has
$F^{\prime \prime}(x)=0$ or $f^{\prime \prime}$ undefined

Find the critical points of f (if any). Find the open intervals on which the function is increasing or decreasing and locate all relative extrema. (pg 186)
22) $f(x)=x^{3}-6 x^{2}+15$

Find c.p. (F' $(x)=0$ or undefined)

36) $f(x)=\frac{x+4}{x^{2}}$

| Assignment: |
| :---: | :---: |
| Pg. 186 |
| $17-41$ odd, |
| 85 |
| |
| |

Assignment 2:
Pg. 195
19-51 odd
69, 77, 79

