Calculus AB 3-3 and 3-4 1st and 2nd Derivative Tests

First Derivative Test- Let c be a critical number of a function f that is continuous on an open interval (a,b), containing c. If f is differentiable on the interval, except possibly at c, then:
1) if f'(x) changes from negative to positive at c, then f(c) is:
2) if f'(x) changes from positive to negative at c, then f(c) is:
3) if f'(x) does not change signs at c, then f(c) is:
test Fails.

Find the critical points of f (if any). Find the open intervals on which the function is increasing or decreasing and locate all relative extrema. (pg 186)
22) $f(x) = x^3 - 6x^2 + 15$
Find ep (F(x)=0 or undefined)
F(x)= 3x2-12x
$O = 3 \times (x - 4)$
x=0,4 Extrema (either do 1st derivative test or second)
f' = f'(-1) = 1S $f'(3) = -9f(0) = 0$ $f'(2) = 0$ increasing $f(1) = -9$ $f'(2) = 10^{-40} + (-\infty, 0)V(4-0)$
max x= D Min at x=4 (3.4)
2nd F (x) = 6x-12
F"(0)=-12 20 -> max
F"(4)= 12 >0-> min

Find all points of inflection and discuss the concavity of the function. (pg 195) 20) $f(x) = -x^4 + 24x^2$ (2,80) F(x)=-4x3+48× (-z, 80) $F''(x) = -12x^2 + 48$ concave 4p (-2,2) 0=-12 (x2-4) D=-12(x+2)(x-2) concave down x=2, x=-2)=36 F"(3)=60 (-2)u(2,2) F"(1)=36 F (2)=0 F"(-2)=0 F"(3)=-60 F*(-1)= 36 In this Second Derivative Test, we need a value on either side of the critical point to determine whether it is concave up or down.

A spicere out 2.	
Assignment 2:	
Pg. 195	
19-51 odd	
69, 77, 79	